Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add filters








Year range
1.
Kampo Medicine ; : 154-168, 2010.
Article in Japanese | WPRIM | ID: wpr-361711

ABSTRACT

The purpose of this study was to verify the concept of Kampo medicine epidemiologically and demonstrate the objective bases of the Kampo treatment. For this purpose, a population based survey of subjective symptoms based on Kampo medicine was conducted among 1,486 residents of Hase village, Nagano prefecture, ages 20 and older. The completion rate was 80.7% and 1,199 residents provided favorable responses. An investigation of gender differences showed a higher rate of blood deficiency among female residents, while spleen and qi deficiency were more common in males. Considering age differences, symptoms related to blood deficiency and water-dampness affected younger females, symptoms related to qi deficiency primarily affected younger males, and symptoms of liver afflictions were common in younger both genders. Among the elderly residents, symptoms of kidney deficiency were overwhelmingly predominant in both genders. Though younger people with subjective sense of health had few diseases in western medicine, most of the elderly with perceived health actually had some kind of diseases for medical treatment. Physical symptoms in the chest area such as shortness of breath correlated positively with the perception not to be healthy, and these may be regarded as both the manifestation and factors contributing to ill health. Approximately 1 out of 12 residents reported currently receiving the treatment of oriental medicine or demonstrated the potential to benefit from such intervention. These results may clinically be useful as the objective bases to perform the Kampo treatment.

2.
Acta Pharmaceutica Sinica ; (12): 35-39, 2007.
Article in Chinese | WPRIM | ID: wpr-281930

ABSTRACT

To study the mechanism of downregulation of apoptosis by autophagy induced by oridonin in HeLa cells, the cell viability was measured by MTT method. DNA fragmentation was assayed by agarose gel electrophoresis. Autophagic and apoptotic ratio was determined by flowcytometric analysis. Protein expression was detected by Western blotting analysis. Oridonin induced both apoptosis and autophagy in HeLa cells. Apoptosis was upregulated by introduction of the inhibitor of autophagy, 3-methyladenine (3-MA). Addition of oridonin increased Bax/Bcl-2 expression ratio and cytochrome c, whereas the expression of SIRT-1 was decreased, and 3-MA pre-application enhanced these changes. Oridonin-induced autophagy antagonized apoptosis in HeLa cells through mitochondrial pathway.


Subject(s)
Humans , Antineoplastic Agents, Phytogenic , Pharmacology , Apoptosis , Autophagy , Blotting, Western , Cytochromes c , Metabolism , Diterpenes , Pharmacology , Diterpenes, Kaurane , Pharmacology , Flow Cytometry , HeLa Cells , Isodon , Chemistry , Plant Leaves , Chemistry , Plants, Medicinal , Chemistry , Proto-Oncogene Proteins c-bcl-2 , Metabolism , Sirtuin 1 , Sirtuins , Metabolism , bcl-2-Associated X Protein , Metabolism
3.
Acta Pharmaceutica Sinica ; (12): 263-268, 2007.
Article in Chinese | WPRIM | ID: wpr-281910

ABSTRACT

Silibinin is a polyphenolic flavanoid derived from fruits and seeds of milk thistle (Silybum marianum). To investigate the effect and mechanism of silibinin on beta-isoproterenol-induced rat neonatal cardiac myocytes injury, the viability, the activation of lactate dehydrogenase (LDH) and the content of maleic dialdehyde (MDA) were chosen for measuring the degree of cardiac myocytes injury. Superoxide dismutase (SOD) activity, mitochondrial membrane potential (deltapsi) detected by flow cytometric analysis, and Western blotting analysis were applied to determine the related proteins. Silibinin protected isoproterenol-treated rat cardiac myocytes from death and significantly decreased LDH release and MDA production. Silibinin increased superoxide dismutase (SOD) activity, and increased mitochondrial membrane potential (deltapsi). Furthermore, the release of pro-apoptotic cytochrome c from mitochondria was reduced by silibinin. Silibinin increased the expression of anti-apoptotic Bcl-2 family protein Bcl-2, and up-regulation of SIRT1 inhibited the translocation of Bax from cytoplasm to mitochondria, which caused mitochondrial dysfunction and cell injury. Silibinin protects cardiac myocytes against isoproterenol-induced injury through resuming mitochondrial function and regulating the expression of SIRT1 and Bcl-2 family members.


Subject(s)
Animals , Rats , Animals, Newborn , Blotting, Western , Cardiotonic Agents , Pharmacology , Cell Survival , Cells, Cultured , Dose-Response Relationship, Drug , Isoproterenol , Toxicity , L-Lactate Dehydrogenase , Metabolism , Malondialdehyde , Metabolism , Membrane Potential, Mitochondrial , Milk Thistle , Chemistry , Mitochondria, Heart , Metabolism , Physiology , Myocytes, Cardiac , Metabolism , Pathology , Plants, Medicinal , Chemistry , Proto-Oncogene Proteins c-bcl-2 , Metabolism , Rats, Sprague-Dawley , Silymarin , Pharmacology , Sirtuin 1 , Sirtuins , Metabolism , Superoxide Dismutase , Metabolism , Up-Regulation , bcl-2-Associated X Protein , Metabolism
4.
Experimental & Molecular Medicine ; : 428-434, 2006.
Article in English | WPRIM | ID: wpr-53147

ABSTRACT

A terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling (TUNEL) assay was used to determine that apoptosis causes HeLa cell death induced by pseudolaric acid B. The c-Jun N-terminal kinase (JNK) inhibitor SP600125 decreased p53 protein expression during exposure to pseudolaric acid B. SP600125 decreased the phosphorylation of p53 during pseudolaric acid B exposure, indicating that JNK mediates phosphorylation of p53 during the response to pseudolaric acid B. SP600125 reversed pseudolaric acid B-induced down-regulation of phosphorylated extracellular signal-regulated protein kinase (ERK), and protein kinase C (PKC) was activated by pseudolaric acid B, whereas staurosporine, calphostin C, and H7 partly blocked this effect. These results indicate that p53 is partially regulated by JNK in pseudolaric acid B-induced HeLa cell death and that PKC participates in pseudolaric acid B-induced HeLa cell death.


Subject(s)
Humans , Tumor Suppressor Protein p53/metabolism , Protein Kinase C/metabolism , Phosphorylation , JNK Mitogen-Activated Protein Kinases/physiology , HeLa Cells , Diterpenes/pharmacology , DNA Fragmentation/drug effects , Cell Death/drug effects , Anthracenes/pharmacology
5.
Acta Pharmaceutica Sinica ; (12): 1033-1036, 2005.
Article in Chinese | WPRIM | ID: wpr-253498

ABSTRACT

<p><b>AIM</b>To study the role of PKC in evodiamine-induced A375-S2 cell death.</p><p><b>METHODS</b>Ratio of apoptosis induced by evodiamine was determined by TUNEL assay. MTT assay was carried out to assess cytotoxic effect of evodiamine. The influence on expression of ERK, phospho-ERK and Bcl-2 was detected by Western blotting analysis.</p><p><b>RESULTS</b>TUNEL assay indicated that apoptosis was the type of A375-S2 cell death induced by evodiamine treatment for 24 h. Both staurosporine (inhibitor of PKC) and PD98059 (inhibitor of ERK) cooperated with evodiamine to further induce A375-S2 cell death. Evodiamine inhibited PKC activity, down-regulated the expression of ERK, phospho-ERK and Bcl-2, and staurosporine was capable of augmenting these effects induced by evodiamine.</p><p><b>CONCLUSION</b>PKC lies upstream and exhibits regulatory effect on ERK and Bcl-2 in evodiamine-induced cell death.</p>


Subject(s)
Humans , Apoptosis , Cell Line, Tumor , Evodia , Chemistry , Extracellular Signal-Regulated MAP Kinases , Metabolism , Flavonoids , Pharmacology , Melanoma , Pathology , Plant Extracts , Pharmacology , Plants, Medicinal , Chemistry , Protein Kinase C , Metabolism , Proto-Oncogene Proteins c-bcl-2 , Metabolism , Quinazolines , Pharmacology , Staurosporine , Pharmacology
6.
China Journal of Chinese Materia Medica ; (24): 1856-1859, 2005.
Article in Chinese | WPRIM | ID: wpr-287270

ABSTRACT

<p><b>OBJECTIVE</b>To study the mechanisms of oridonin-induced U937 cell apoptosis, and to examine the role of ERK MAPK.</p><p><b>METHOD</b>MTT, Hoechst 33258 staining, DNA agarose gel electrophoresis and Western blot analysis were used.</p><p><b>RESULT</b>Oridonin inhibited U937 cell growth in a time- and dose-dependent manner. Apoptotic bodies were found with Hoechst 33258 staining after treatment with 27 micromol x L(-1) oridonin. Simultaneously, ERK phosphorylation was significant. ERK inhibitor PD98059 partially blocked the growth-inhibitory effect as well as DNA fragmentation. The expression of antiapoptotic mitochondrial protein Bcl-XL decreased time-dependently, and that of proapoptotic protein Bax increased. However, PD98059 reversed the effect of oridonin on Bcl-XL and Bax.</p><p><b>CONCLUSION</b>Oridonin induces U937 cell apoptosis through activation of ERK and alteration of the ratio of Bax/Bcl-XL.</p>


Subject(s)
Humans , Apoptosis , Cell Proliferation , DNA Fragmentation , Diterpenes , Pharmacology , Diterpenes, Kaurane , Pharmacology , Dose-Response Relationship, Drug , Extracellular Signal-Regulated MAP Kinases , Metabolism , Flavonoids , Pharmacology , Isodon , Chemistry , Phosphorylation , Plants, Medicinal , Chemistry , U937 Cells , bcl-2-Associated X Protein , Metabolism , bcl-X Protein , Metabolism
7.
China Journal of Chinese Materia Medica ; (24): 55-57, 2005.
Article in Chinese | WPRIM | ID: wpr-276644

ABSTRACT

<p><b>OBJECTIVE</b>To study the mechanisms of pseudolaric acid B-induced apoptosis on A375-S2 cells.</p><p><b>METHOD</b>MTT, fluorescence microscope observation, DNA agarose gel electrophoresis and Western blot analysis wereused.</p><p><b>RESULT</b>Pseudolaric acid Binduces A375-S2 cell apoptosis in a time and dose-dependent manner. Apoptotic bodies and DNA ladder were observed in 5 micromol x L(-1) pseudolaric acid B-treated A375-S2 cells for 36 h. The expression of Bcl-2, Bcl-xL and ICAD was reduced time dependently, whereas the expression of Bax was increased.</p><p><b>CONCLUSION</b>The major cause of pseudolaric acid B induced cytotoxicity on A375-S2 cells was apoptosis. Mitochondria proteins and ICAD might be involved in the apoptotic pathways of pseudolaric acid B-treated A375-S2 cells.</p>


Subject(s)
Humans , Apoptosis , Apoptosis Regulatory Proteins , Cell Line, Tumor , Diterpenes , Pharmacology , Dose-Response Relationship, Drug , Melanoma , Metabolism , Pathology , Pinaceae , Chemistry , Proteins , Metabolism , Proto-Oncogene Proteins c-bcl-2 , Metabolism , bcl-2-Associated X Protein , bcl-X Protein
8.
Chinese Medical Journal ; (24): 198-203, 2005.
Article in English | WPRIM | ID: wpr-257299

ABSTRACT

<p><b>BACKGROUND</b>We have reported that norcantharidin (NCTD) induces human melanoma A375-S2 cell apoptosis and that the activation of caspase and the mitochondrial pathway are involved in the apoptotic process. This study aimed at investigating the roles of mitogen-activated protein kinase (MAPK) and protein kinase C (PKC) in A375-S2 cell apoptosis induced by NCTD.</p><p><b>METHODS</b>We assessed the effects of NCTD on cell growth inhibition using the 3-(4,5-dimethylthiazol-2-yl)-2,5-dipheyltetrazolium bromide (MTT) assay, DNA fragmentation (DNA agarose gel electrophoresis), and MAPK protein levels (Western blot analysis) in A375-S2 cells. Photomicroscopic data were also collected.</p><p><b>RESULTS</b>The NCTD inhibitory effect on A375-S2 cells was partially reversed by MAPK and PKC inhibitors. The expression of phosphorylated JNK and p38 also increased after the treatment with NCTD, and inhibitors of c-Jun NH2-terminal kinase (JNK) and p38 (SP600125 and SB203580, respectively) had significant inhibitory effects on the upregulation of phosphorylated JNK and p38 expression. Simultaneously, the PKC inhibitor staurosporine blocked the upregulation of phosphorylated JNK and phosphorylated p38, but had little effect on extracellular signal-regulated kinase (ERK) expression.</p><p><b>CONCLUSION</b>These results suggest that the activation of JNK and p38 MAPK promotes the process of NCTD-induced A375-S2 cell apoptosis and that PKC plays an important regulation role in the activation of MAPKs.</p>


Subject(s)
Humans , Antineoplastic Agents , Pharmacology , Apoptosis , Bridged Bicyclo Compounds, Heterocyclic , Pharmacology , Cell Line, Tumor , DNA Fragmentation , Enzyme Activation , Melanoma , Drug Therapy , Pathology , Mitogen-Activated Protein Kinases , Physiology , Protein Kinase C , Physiology , Staurosporine , Pharmacology
9.
Journal of Korean Medical Science ; : 555-561, 2005.
Article in English | WPRIM | ID: wpr-147627

ABSTRACT

Interleukin-1beta (IL-1beta) is a pivotal proinflammatory cytokine. To investigate the mechanism of IL-1beta-induced cell death in human malignant melanoma A375-S2 cells, MTT assay, photomicroscopical observation, DNA agarose gel electrophoresis, radioimmunoassay and Western blot analysis were carried out. IL-1beta did not only induce nuclear condensation and DNA fragmentation, but also increased degradation of two substrates of caspase-3, poly ADP-ribose polymerase (PARP) and inhibitor of caspase-activated DNase (ICAD). Simultaneously, release of precursor of IL-1beta (pro-IL-1beta) and endogenous IL-1beta production were involved in the apoptotic process. IL-1beta enhanced the ratio of Bax/Bcl-2 and Bax/Bcl-xL expression and up-regulated apoptosis inducing factor (AIF) expression, which required the activation of downstream caspases. These results suggest that IL-1beta induces endogenous IL-1beta production, enhances cleavage of caspase downstream substrates and promotes mitochondria mediated apoptosis in A375-S2 cells.


Subject(s)
Humans , Apoptosis/drug effects , Blotting, Western , Caspase 1/metabolism , Caspases/metabolism , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , Comparative Study , DNA Fragmentation/drug effects , Deoxyribonucleases/metabolism , Dose-Response Relationship, Drug , Enzyme Activation/drug effects , Interleukin-1/biosynthesis , Interleukin-6/pharmacology , Lymphotoxin-alpha/pharmacology , Melanoma/metabolism , Mitochondria/physiology , Poly(ADP-ribose) Polymerases/metabolism , Proto-Oncogene Proteins c-bcl-2/biosynthesis , Time Factors
10.
Acta Pharmaceutica Sinica ; (12): 966-970, 2004.
Article in Chinese | WPRIM | ID: wpr-241381

ABSTRACT

<p><b>AIM</b>To study the mechanism of dracorhodin perchlorate-induced Hela cell apoptosis.</p><p><b>METHODS</b>Cell viability was measured by MTT method. Morphological changes were observed by phase contrast microscopy and Hoechst 33258 staining. DNA fragmentation was assayed by agarose gel electrophoresis. Protein expression was detected by Western blot analysis.</p><p><b>RESULTS</b>Dracorhodin perchlorate induced Hela cell apoptosis. The apoptosis was partially reversed by caspase-1, -3, -8, -9 and caspase family inhibitors. Treatment of Hela cells with dracorhodin perchlorate for 12 h increased the protein expression ratio of Bax/Bcl-XL; procaspase-3, -8, ICAD and PARP were cleaved to smaller molecules.</p><p><b>CONCLUSION</b>Dracorhodin perchlorate induced Hela cell death via alteration of Bax/Bcl-XL ratio and activation of caspases.</p>


Subject(s)
Humans , Antineoplastic Agents, Phytogenic , Pharmacology , Apoptosis , Apoptosis Regulatory Proteins , Arecaceae , Chemistry , Benzopyrans , Pharmacology , Caspase Inhibitors , Caspases , Metabolism , Cell Line, Tumor , Drugs, Chinese Herbal , Pharmacology , HeLa Cells , Plants, Medicinal , Chemistry , Proteins , Metabolism
11.
Experimental & Molecular Medicine ; : 551-556, 2004.
Article in English | WPRIM | ID: wpr-145925

ABSTRACT

Pseudolaric acid B was isolated from Pseudolarix kaempferi Gordon (Pinaceae) and was evaluated for the anti-cancer effect in HeLa cells. We observed that pseudolaric acid B inhibited cell proliferation and induced apoptosis in a time- and dose-dependent manner. HeLa cells treated with pseudolaric acid B showed typical characteristics of apoptosis including the morphological changes and DNA fragmentation. JNK inhibitor, SP600125, markedly inhibited pseudolaric acid B-induced cell death. In addition, Bcl-2 expression was down-regulated while Bax protein level was up-regulated. Caspase-3 inhibitor, z-DEVD-fmk, partially blocked pseudolaric acid B-induced cell death, and the expression of two classical caspase substrates, PARP and ICAD, were both decreased in a time- dependent manner, indicative of downstream caspase activation.


Subject(s)
Humans , Anthracenes/pharmacology , Apoptosis , Caspases/antagonists & inhibitors , Cell Proliferation/drug effects , Cysteine Proteinase Inhibitors/pharmacology , Diterpenes/pharmacology , Down-Regulation , Enzyme Activation , HeLa Cells , JNK Mitogen-Activated Protein Kinases/drug effects , Oligopeptides/pharmacology , Protein Kinase Inhibitors/pharmacology , Proto-Oncogene Proteins c-bcl-2/metabolism , Signal Transduction/drug effects , Up-Regulation
12.
Journal of Korean Medical Science ; : 560-566, 2004.
Article in English | WPRIM | ID: wpr-109226

ABSTRACT

Norcantharidin (NCTD) is the demethylated form of cantharidin, which is the active substance of mylabris. To examine the pathway of NCTD-induced A375-S2 cell death, 3-(4, 5-dimethylthiazol-2-yl)-2, 5-dipheyltetrazolium bromide (MTT) assay, photomicroscopical observation, DNA agarose gel electrophoresis, caspase activity assay and Western blot analysis were carried out. A375-S2 cells treated with NCTD exhibited several typical characteristics of apoptosis. The inhibitory effect of NCTD on human melanoma, A375-S2 cells, was partially reversed by the inhibitors of pan-caspase, caspase-3 and caspase-9. The activities of caspase-3 and -9 were significantly increased after treatment with NCTD at different time. The expression of inhibitor of caspase-activated DNase was decreased in a time-dependent manner, simultaneously, the ratio of Bcl-2/Bax or Bcl-xL/Bax was decreased and the expression ratio of proteins could be reversed by caspase-3 inhibitor. The expression of cytochrome c in cytosol was increased after NCTD treatment and caspase- 3 inhibitor had no significant effect on the up-regulation of cytochrom c. These results suggest that NCTD induced A375-S2 cell apoptosis and the activation of caspase and mitochondrial pathway were involved in the process of NCTD-induced A375-S2 cell apoptosis.


Subject(s)
Animals , Humans , Apoptosis/physiology , Bridged Bicyclo Compounds, Heterocyclic/chemistry , Caspases/antagonists & inhibitors , Cell Line, Tumor/drug effects , Cell Shape , DNA Fragmentation , Enzyme Activation , Mitochondria/metabolism , Molecular Structure , Proto-Oncogene Proteins c-bcl-2/metabolism , Signal Transduction/physiology
13.
Acta Pharmaceutica Sinica ; (12): 650-653, 2003.
Article in Chinese | WPRIM | ID: wpr-266597

ABSTRACT

<p><b>AIM</b>To study the mechanism of evodiamine-induced cell death of A375-S2.</p><p><b>METHODS</b>The changes in cell morphology were observed by invert microscopy and Hoechst 33258 staining. DNA fragmentation was assayed by agarose gel electrophoresis. The effects of evodiamine on apoptosis and cell cycle were studied by flow cytometric analysis.</p><p><b>RESULTS</b>Evodiamine was shown to markedly inhibit the growth of A375-S2 cells in dose- and time-dependent manners. At the early stage, evodiamine activated caspase cascades, which unexpectedly did not induce typical DNA fragmentation. At later stage, caspase inhibitors failed to block A375-S2 cell death induced by evodiamine. Evodiamine-induced cell death was shown to be not directly associated with cell cycle arrest.</p><p><b>CONCLUSION</b>At the early stage, evodiamine initiates caspase-dependent and a typical apoptosis pathway in A375-S2 cells, but later it induces cell death through caspase-independent pathway which might be necrosis.</p>


Subject(s)
Humans , Antineoplastic Agents, Phytogenic , Pharmacology , Apoptosis , Caspase Inhibitors , Caspases , Metabolism , Cell Cycle , Cell Division , DNA Fragmentation , Physiology , Dose-Response Relationship, Drug , Evodia , Chemistry , Melanoma , Pathology , Plant Extracts , Pharmacology , Quinazolines , Pharmacology , Time Factors , Tumor Cells, Cultured
14.
Kampo Medicine ; : 623-628, 1999.
Article in English | WPRIM | ID: wpr-368273

ABSTRACT

Thirty-three patients with complaints of idiopathic oligo-asthenozoospermia were treated with traditional Chinese medicine. Their symptom complexes were diagnosed from the states of qi and blood, the conditions of body fluid, and pathological changes of zan-fu organs by means of four traditional methods in Chinese medicine, i. e., inspection, auscultation and olfaction, inquiry, and pulse-feeling and palpation. The patients were classified into Stagnation of the Liver-Qi (Kankiutsu-sho, 11 cases), Deficiency of Kidney (Jinkyosho, 5 cases), Deficiency of the Spleen-Qi (Hikikyo-sho, 9 cases), Phlegm-Dampness (Tanshitsu-sho, 5 cases), Damp-Heat (Shitsunetsu-sho, 3 cases).<br>The changes in target symptoms and signs, semen qualities, and serum hormones were compared before and after six months of treatment with the corresponding prescriptions. Seven successful pregnancies have been accomplished, with a pregnancy rate of 21.2%. Although no significant increases in sperm concentration and motility were recorded, most target symptoms and signs were improved, and the serum testosterone and estradiol were significantly decreased after treatment.

SELECTION OF CITATIONS
SEARCH DETAIL